Code-Memo

Queues

A queue is a linear data structure that follows the First-In-First-Out (FIFO) principle. The element inserted first is the one to be removed first. It is used in scenarios like task scheduling, buffering, and breadth-first search.

Types of Queues

  1. Simple Queue: Basic FIFO behavior.
  2. Circular Queue: Connects the last position back to the first to efficiently use space.
  3. Deque (Double-Ended Queue): Allows insertion and deletion from both ends.
  4. Priority Queue: Elements are served based on priority rather than arrival time.

1. Simple Queue Using List

queue = []

Enqueue (Add to end)

queue.append(10)
queue.append(20)

Dequeue (Remove from front)

queue.pop(0)  # Removes 10

! Inefficient for large queues due to O(n) time on pop(0)

2. Queue Using collections.deque

from collections import deque

queue = deque()

Enqueue

queue.append(10)
queue.append(20)

Dequeue

queue.popleft()  # Removes 10

Check if empty

if not queue:
    print("Queue is empty")

Peek (front element)

print(queue[0])

3. Circular Queue (Custom Implementation)

class CircularQueue:
    def __init__(self, size):
        self.queue = [None] * size
        self.head = self.tail = -1
        self.size = size

Enqueue

def enqueue(self, value):
    if (self.tail + 1) % self.size == self.head:
        print("Queue is full")
        return
    if self.head == -1:
        self.head = self.tail = 0
    else:
        self.tail = (self.tail + 1) % self.size
    self.queue[self.tail] = value

Dequeue

def dequeue(self):
    if self.head == -1:
        print("Queue is empty")
        return
    removed = self.queue[self.head]
    if self.head == self.tail:
        self.head = self.tail = -1
    else:
        self.head = (self.head + 1) % self.size
    return removed

4. Deque (Double-Ended Queue)

from collections import deque

dq = deque()

Insert Front / Rear

dq.appendleft(10)
dq.append(20)

Remove Front / Rear

dq.popleft()  # Removes 10
dq.pop()      # Removes 20

5. Priority Queue

import heapq

pq = []
heapq.heappush(pq, 2)
heapq.heappush(pq, 1)
heapq.heappush(pq, 3)

Pop with highest priority (smallest number)

heapq.heappop(pq)  # Returns 1